Пятнадцатый Южный математический турнир Онлайн, 15-21.10.2020

Командная олимпиада. 15 октября 2020 г.

Юниор-лига

Первый тур

1. Вася написал на доске натуральные числа от 1 до n и вычеркнул одно из них. Среднее арифметическое оставшихся оказалось равно $\frac{439}{13}$. При каком наименьшем n это могло случиться?

Ответ 66.

Обозначив за a — вычеркнутое число, получим $\frac{n(n+1)-2a}{2(n-1)}=\frac{439}{13}$. Откуда, $(n-1)\.13$ или n=13k+1. Перебирая k=1,2,3,4 получаем противоречие. Для k=5 можно взять a=16.

2. Для каждого натурального $n \leq 3000$ нашли наименьшее натуральное число, на которое n не делится. Какое наибольшее число могло получиться?

Ответ 11

Т.к. произведение $11\cdot 5\cdot 9\cdot 8\cdot 7>3000$, то любое число не делится на какое-либо число, меньшее $11.\ 2520$ делится на все числа от 1 до 10.

3. Назовём расстоянием между двумя вершинами правильного 18-угольника наименьшее количество сторон 18-угольника, по которым можно пройти из одной вершины в другую (так, соседние вершины находятся на расстоянии 1, а противоположные — на расстоянии 9). Сколькими способами можно выбрать три вершины 18-угольника так, чтобы никакие две из них не находились на расстоянии 1, 8 или 9? (Вершины 18-угольника считаются различными, то есть две несовпадающие тройки, одну из которых можно перевести в другую движением, считаются по отдельности.)

Ответ 240

Пронумеруем вершины от 0 до 17. Первую вершину выбираем 18 способами. Пусть она имеет номер 0. Нельзя брать вершины с номерами 17,0,1,8,9,10. Если вторая вершина 16,2,7 или 11, то третью вершину можно выбрать 8 способами. Если вторая вершина – одна из 8 оставшихся, то третью вершину можно выбрать 6 способами. Итого $18\cdot(32+48)=1440$ способов, причем каждый учтен 6 раз. Отсюда ответ 240.

4. В трапеции MATH с основаниями MH и AT длины сторон MA, AT и TH равны 5, а стороны MH-11. Высоты треугольника ATH пересекаются в точке S. Найдите площадь четырёхугольника MASH.

Ответ 62

Обозначим за K точку пересечения ST и HM. Через O, P, N обозначим основания высот треугольника SHA, проведенных из S, H, A соответственно. ATKH — ромб со стороной

- 5. По формуле Герона площадь треугольника AKM равна $12.\ S_{THK}/S_{AMK}=KH/MK$, следовательно, $S_{ATHK}=2S_{THK}=20.$ Находим высоту трапеции NH=4. Из теоремы Пифагора, TN=3. Тогда, $S_{APT}=S_{TNH}=6.$ Из подобия SKH и STN находим $S_{STP}=S_{STN}=9.$ Складывая площади, получаем ответ.
- 5. Сколько существует перестановок чисел 1, 2, 3, 4, 5, 6, из которых можно удалить одно число так, чтобы оставшиеся были упорядочены по возрастанию или по убыванию?

Ответ 52

Заметим, что нет перестановки, при удалении одного из элементов которой получится возрастающая последовательность, при удалении другого – убывающая. Посчитаем количество "возрастающих". Расставив 5 элементов в порядке возрастания, шестой можно поставить 6 способами. Проделав так для каждого элемента получим 36 способов. Заметим, что способ 1,2,3,4,5,6 считается 6 раз. А способы отличающиеся от упомянутого выше перестановкой соседних цифр – дважды. Итого 36-5-5=26 возрастающих и аналогично 26 убывающих.

6. Квадратный трёхчлен P(x) с вещественными коэффициентами удовлетворяет условию $P(x)=P(0)+P(1)x+P(2)x^2$ при всех вещественных x. Известно, что P(3)=7. Найдите P(-1).

Ответ 7/5

Пусть $P(x)=ax^2+bx+c$. Получим, P(2)=a, P(1)=b, P(0)=c. Подставляя в исходное равенство 0,1,2, получим P(1)=a+b+c, P(2)=4a+2b+c. Из этого следует, что b=c=-a. Далее, находим P(3)=5a. Откуда, a=7/5. Подставляя -1 находим, что P(-1)=7/5.

7. Последовательность (a_n) задана условиями $a_1=10,\, a_{n+1}=\frac{n+2}{n}\cdot(a_n-1)$ при всех натуральных n. Найдите $a_{2020}.$

Ответ 16331701

Доказываем по индукции, что $a_n=\frac{n(n+1)}{2}a_1-(n-1)(n+1)$. Действительно, $a_{n+1}=\frac{n+2}{n}\cdot(\frac{n(n+1)}{2}a_1-(n-1)(n+1)-1)=\frac{(n+1)(n+2)}{2}a_1-n(n+2)$. Далее, подставляя n=2019, находим ответ.

8. В группе n детей. В каждой паре детей хотя бы один послал другому SMS. Оказалось, что для каждого ребёнка среди тех, кому он послал SMS, ему послали SMS ровно 25%. При каких n это возможно?

Ответ
$$n = 7k$$
, $n = 7k + 1$

Рассмотри пары людей, пославших SMS друг другу. Пусть k - количество таких пар. Тогда, количество SMS в сумме равно 8k. С другой стороны, количество SMS на k больше количества пар людей в компании. Получим, $8k=\frac{n(n-1)}{2}+k$. Откуда, n(n-1) кратно 7 или n=7k, n=7k+1. В случае n=7k+1 ставим детей по кругу и каждый отправляет SMS следующим 4k за ним по часовой стрелке. В случае n=7k расставим 7k-1 детей по кругу. Каждый из них пошлет 4k-1 SMS следующим за ним по часовой стрелке. И каждый из них пошлет по SMS тому, кто не стоит в круге.

Время на решение задач I части: 9.30 – 11.00.

В 11.00 работы должны быть сданы руководителю команды.

Работы следует отсканировать или сфотографировать в хорошем качестве и отправить на адрес orlyonok@adygmath.ru не позже 11.15. Работы, присланные после 11.15, проверены не будут. Пожалуйста, убедитесь, что файлы с вашими решениями читаются.